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Thermal convection in a rotating cylinder near onset is investigated using direct
numerical simulations of the Navier–Stokes equations with the Boussinesq approxima-
tion in a regime dominated by the Coriolis force. For thermal driving too small to
support convection throughout the entire cell, convection sets in as alternating pairs
of hot and cold plumes in the sidewall boundary layer, the so-called wall modes
of rotating convection. We subject the wall modes to small amplitude harmonic
modulations of the rotation rate over a wide range of frequencies. The modulations
produce harmonic Ekman boundary layers at the top and bottom lids as well as a
Stokes boundary layer at the sidewall. These boundary layers drive a time-periodic
large-scale circulation that interacts with the wall-localized thermal plumes in a non-
trivial manner. The resultant phenomena include a substantial shift in the onset
of wall-mode convection to higher temperature differences for a broad band of
frequencies, as well as a significant alteration of the precession rate of the wall
mode at very high modulation frequencies due to the mean azimuthal streaming flow
resulting from the modulations.

1. Introduction
Rayleigh–Bénard convection has long been a popular nonlinear system which is

used to study the effects of temporal forcing of the control parameters. Recently,
there has been specific interest in how the system responds to a modulated rotation
(Bhattacharjee 1990; Niemela, Smith & Donnelly 1991; Thompson, Bajaj & Ahlers
2002). In the laboratory experiments of Thompson et al. (2002), the mean rotation
rates were restricted to being small enough to ensure that in the unmodulated case
the onset of convection was to a bulk mode rather than a wall mode (Ecke, Zhong &
Knobloch 1992; Goldstein et al. 1993). In numerically reproducing the experimental
observations of Thompson et al. (2002), Rubio, Lopez & Marques (2008) showed
that the oscillatory boundary layers resulting from the modulation greatly affect the
Küppers–Lortz spatio-temporal chaos associated with the onset of bulk convection
(Küppers & Lortz 1969; Herrmann & Busse 1993; Kuo & Cross 1993; Knobloch
1998; Bodenschatz, Pesch & Ahlers 2000), leading to the experimentally observed
spiral and target patterns, even for small amplitude modulations. The secondary
flows associated with the oscillatory boundary layers were found to be strongest near
the cylinder sidewall, and it is natural to ask how these boundary layers interact with
the much simpler case of wall-localized convection found near onset at higher mean
rotation rates.
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Preliminary numerical experiments showed that modulations of the rotation rate
could delay the onset of thermal convection to thermal forcing levels well beyond
those required in the unmodulated case. Or, to put it another way, with modulated
rotation the three-dimensional wall modes could be driven to an axisymmetric state
with a greatly reduced heat flux, a behaviour we refer to as quenching. The focus
of the present study is the examination of how the wall modes are quenched as a
function of modulation amplitude and modulation frequency. For the most part, we
hold the thermal forcing constant to see how a single initial wall-mode state either
persists or is driven to a state without thermal convection. This focused approach
permits an extensive survey of modulation amplitudes and modulation frequencies
and led to the discovery of a wide band of modulation frequencies which quenches
thermal convection at even quite modest modulation amplitudes of less than 1 % of
the mean rotation rate. Particular attention is given to the interaction between the
wall modes of convection and the modulation-driven boundary layers, whose nature
changes considerably at high background rotation rates. The modulation-driven
secondary flow exists for all non-zero modulation amplitudes and grows in strength
with increasing modulation amplitude and frequency. As such, it is surprising that
the optimal modulation frequency for quenching thermal plumes is not associated
with frequencies for which the secondary flow is strongest. In fact, at the highest
frequencies considered the spatial structure of the thermal plumes remains intact
for the range of modulation amplitudes considered. The structure of the mean
component of the secondary flow is examined in detail and its interaction with the
thermal plumes is discussed. The generation of a streaming flow driven by oscillatory
viscous boundary layers is a common phenomenon in parametrically forced fluid
dynamics, first elucidated by Schlichting (1932) (also see the review article by Riley
2001). However, in those examples the streaming flow is normal to the direction
of the oscillations. In our problem, the imposed oscillations are in the azimuthal
direction and a meridional (normal to the azimuthal direction) streaming flow is also
established, but so is a streaming flow in the azimuthal direction. Both streaming
flows have important effects. The azimuthal streaming flow decreases the precession
rate of the wall modes at high frequency, while the meridional streaming flow drives
a non-trivial mean temperature perturbation at the frequencies where the quenching
takes place.

The layout of the paper consists of a description of the governing equations,
boundary and initial conditions and the spectral method used to solve them in § 2.
A brief overview of wall-mode convection in rotating cylinders is presented in § 3
in order to provide a setting for the new results due to the harmonic modulation,
presented in § 4. Section 4 consists of a number of subsections; § 4.1 presents the
main motivating observation for the paper – the quenching of the wall modes with
a small amplitude modulation at intermediate frequencies. Section 4.2 explores the
physical mechanism responsible for the quenching – the action of the oscillatory
boundary layers – in a regime where the wall modes are not present. Finally, § 4.3
examines the structure and behaviour of the modulated wall modes, the states that
result from the competition between the wall-localized thermal convection and the
modulation-driven flow in regimes where the thermal convection is not quenched.

2. Governing equations and numerical technique
Consider the flow in a rotating circular cylinder, with no-slip boundary conditions,

of radius r0 and depth d , with a modulated angular frequency ω(t∗) = ω0+ω1 sin(ωmt∗),
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where t∗ is dimensional time. The endwalls are maintained at constant temperatures,
T0 −�T/2 at the top and T0 +�T/2 at the bottom, and the sidewall is insulating. The
Boussinesq approximation is implemented, treating all fluid properties as constant
except for the density in the gravitational term, which varies linearly with temperature.
The centrifugal buoyancy (Lopez, Rubio & Marques 2006; Marques et al. 2007) is
ignored in this study as the majority of related experiments in rotating convection
have very small Froude numbers (typically Fr = ω2

0r0/g < 0.025, where g is the
gravitational acceleration in the negative z-direction). Nevertheless, in any physical
experiment Fr �= 0 and so comparing the present results with experiments needs to
be done with caution. The system is non-dimensionalized using d as the length scale,
d2/ν as the time scale (ν is the kinematic viscosity), ν2ρ0/d

2 as the pressure scale
(ρ0 is the density at mean temperature T0) and �T (the difference in temperature
between the top and bottom) as the temperature scale. In a frame of reference rotating
at the mean rotation rate ω0, the non-dimensional governing equations are

(∂t + u · ∇)u = −∇p + ∇2u +
Ra

σ
(Θ − z)z + 2Ω0u × z, (2.1)

(∂t + u · ∇)Θ = w + σ −1∇2Θ, ∇ · u = 0, (2.2)

where u = (u, v, w) is the velocity in cylindrical coordinates (r, θ, z), P is the dynamic
pressure, z is the vertical unit vector in the z-direction and Θ is the temperature
deviation with respect to the conductive linear temperature profile; the relationship
between Θ and the non-dimensional temperature T is given by

T = T0/�T − z + Θ, (2.3)

where T0/�T − z is the conductive temperature profile.
There are six independent non-dimensional parameters:

Rayleigh number: Ra = αgd3�T /κν,

Coriolis number: Ω0 = ω0d
2/ν,

Prandtl number: σ = ν/κ,

aspect ratio: γ = r0/d,

modulation amplitude: Ω1 = ω1d
2/ν,

modulation frequency: Ωm = ωmd2/ν,

where α is the coefficient of volume expansion and κ is the thermal diffusivity. The
boundary conditions (in a frame of reference rotating at the mean rotation rate ω0)
are

r = γ : Θr = u = w = 0, v = γΩ(t)
z = ±0.5: Θ = u = w = 0, v = rΩ(t),

where Ω(t) = Ω1 sin(Ωmt) is the angular velocity of the cylinder in a reference frame
rotating with the mean angular velocity Ω0. To simplify the discussion, we introduce
the relative modulation amplitude A= Ω1/Ω0 to allow for comparison between states
with differing Ω0. A will be used instead of Ω1, except in the particular case when
Ω0 = 0, as A is then not defined.

The governing equations and boundary conditions are invariant under arbitrary
rotations through angle α about the axis Rφ , whose action is

Rφ(u, v, w, Θ)(r, θ, z, t) = (u, v, w, Θ)(r, θ + φ, z, t). (2.4)
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They are also reflection symmetric about the cylinder half-height. The action Kz of
this so-called Boussinesq symmetry is

Kz(u, v, w, Θ)(r, θ, z, t) = (u, v, −w, −Θ)(r, θ, −z, t). (2.5)

The symmetry group of the system is G = SO(2) × Z2, with SO(2) generated by Rα

and Z2 by Kz.
The governing equations are solved using the second-order time splitting of

Hughes & Randriamampianina (1998), combined with a pseudo-spectral method
for the spatial discretization, utilizing a Galerkin–Fourier expansion in the azimuthal
coordinate θ and Chebyshev collocation in r and z. Following Orszag & Patera
(1983), we have used the combinations u+ = u + iv and u− = u − iv in order to
decouple the linear diffusion terms in the momentum equations. For each Fourier
mode, the resulting Helmholtz equations for Θ , w, u+ and u− have been solved
using a diagonalization technique in the two coordinates r and z. The coordinate
singularity at the axis (r =0) is treated following the prescription in Fornberg (1998)
that guarantees the regularity conditions at the origin needed to solve the Helmholtz
equations (Mercader, Net & Falqués 1991).

The code has been validated on a number of convection problems in rotating
cylinders (Lopez et al. 2006, 2007; Marques et al. 2007; Rubio et al. 2008), establishing
resolution requirements over a wide range of parameters. For the cases considered
in this paper, nr = 48 and nz =24 Chebyshev modes in r and z, respectively, were
employed. For cases where the solution is non-axisymmetric, nθ =184 Fourier modes
in θ were used. The time discretization used δt � 0.00015 viscous time units, with
no fewer than 300 δt per modulation period. Figure 1 shows the rate of spectral
convergence of Θ for a typical modulated wall mode, with A = 0.0075, Ωm = 101.5

and Ra = 5 × 104, computed with (nr, nz, nθ ) = (48, 24, 184) (filled symbols), and
compared to a simulation with higher resolution using (nr, nz, nθ ) = (96, 48, 184)
(open symbols). The temperature perturbation is expanded as

Θ(r, θ, z, t) =

2nr+1∑
m=0

nz∑
n=0

nθ /2−1∑
k=−nθ /2

v̂mnk(t)Tm(r/γ )Tn(2z)eikθ . (2.6)

Although the radial sum extends up to 2nr + 1, Fornberg’s prescription guarantees
that there are exactly nr +1 degrees of freedom in the radial direction. To demonstrate
the spectral convergence of the method, the temperature perturbation was separated
into its radial, axial and azimuthal components:

Θm(r, θ, z, t) =

nz∑
n=0

nθ /2−1∑
k=−nθ /2

v̂mnk(t)Tm(r/γ )Tn(2z)eikθ , (2.7)

Θn(r, θ, z, t) =

2nr+1∑
m=0

nθ /2−1∑
k=−nθ /2

v̂mnk(t)Tm(r/γ )Tn(2z)eikθ , (2.8)

Θk(r, θ, z, t) =

2nr+1∑
m=0

nz∑
n=0

v̂mnk(t)Tm(r/γ )Tn(2z)eikθ . (2.9)

The relative truncation error was estimated for the radial and axial Chebyshev
expansions by dividing the largest L2-norm component of the lower resolution solution
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Figure 1. The L2-norms of (a) Θm, (b) Θn and (c) Θk for a modulated wall mode at
A = 0.0075, Ωm = 101.5, with Ra =5 × 104 and Ω0 = 625. The open symbols correspond to
solutions obtained using (nr, nz, nθ ) = (96, 48, 184), while the filled symbols correspond to
solutions with (nr, nz, nθ ) = (48, 24, 184).

by the smallest L2-norm component of the same, where the L2-norm is given by

||Θ ||2 =

[∫ 1/2

−1/2

∫ 2π

0

∫ γ

0

Θ2(r, θ, z)r dr dθ dz

]1/2

. (2.10)

In the azimuthal direction, the relative truncation error was estimated by considering
the ratio of the peak of the first harmonic to that of the fifth harmonic. The relative
truncation error for the solution shown in figure 1 is 10−15 in r , 10−13 in z and 10−8

in θ .
In the present study, the aspect ratio γ = 4, Prandtl number σ =7 and Coriolis

number Ω0 = 625 are fixed to correspond to those in previous studies (Lopez et al.
2006, 2007), and we consider variations in A and Ωm for Ra =4 × 104 and 5 × 104.
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Figure 2. Isosurfaces of Θ , at Θ = ± 0.05, for m = 17 wall mode at Ra = 5 × 104, Ω0 = 625
and A = 0. Movie 1, available in the online version, shows this solution over seven viscous
times at a rate of 0.84 viscous times per second.

3. Background on unmodulated wall modes
For the constant rotation problem in the limit of zero centrifugal force, the basic

state consists of solid-body rotation with the conductive linear temperature profile,

(u, v, w, Θ)(r, θ, z, t) = (0, 0, 0, 0). (3.1)

For small Ω0 (between about 20 and 100, depending on the parameter regime),
convection sets in as a bulk mode with Küppers–Lortz spatio-temporal chaos. For
Ω0 > 125 and σ = 6.4, the onset of convection occurs as a wall mode, a convective
mode local to the sidewall emerging as a result of the interplay between the Coriolis
force and the sidewall (Zhong, Ecke & Steinberg 1991; Goldstein et al. 1994). The
onset of the wall mode breaks the continuous SO(2) symmetry of the basic state; the
wall modes are invariant to discrete rotations R2π/m where the azimuthal wavenumber
m is the number of pairs of hot and cold plumes. Breaking the SO(2) symmetry leads
to a precession of the wall-mode structure (Ecke et al. 1992). The spatial structure does
not vary in time, the solution is a rotating wave and hence a relative equilibrium in
a frame of reference rotating at its precession frequency. The Kz reflection symmetry
is also broken, but the wall modes are invariant under a half-wavelength rotation
composed with a reflection Rπ/mKz.

For Ω0 = 625, σ = 7 and γ =4, the emergence of the wall mode has been studied
in some detail (Lopez et al. 2007). Onset is via an Eckhaus–Benjamin–Feir instability
in which the solution with m =18 bifurcates first at Ra = 42 286, and m = 17 mode
bifurcates and becomes stable to long-wave perturbations at a slightly larger Ra .
The onset of convection throughout the cell, i.e. the onset of bulk convection, occurs
at about Ra =9.6 × 104, with some considerable influence from initial conditions
(Marques & Lopez 2008). For the majority of this study, m = 17 wall mode at
Ra = 5 × 104 (shown in figure 2 and movie 1, available in the online version), was
used as the initial condition since the dynamics of the modulated wall modes of
various wavenumbers were found to be qualitatively the same. The instantaneous
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Figure 3. Space–time diagrams (θ ∈ [0, 2π) in the horizontal direction and five viscous times
in the vertical direction) of Θ(r = γ, θ, 0, t) for modulated wall modes at Ra = 5 × 104,
Ω0 = 625, Ωm = 101.75 with (a) A = 0.0075 and (b) A = 0.01. Movies 2 and 3, available in the
online version show three-dimensional renderings of these two solutions over five viscous times
at a rate of 0.112 viscous times per second, i.e. one modulation period per second.

precession rate of a rotating wave is given by

Ωp =
dφ

dt
= ΩH/m, (3.2)

where φ is the angular position of a point in the pattern and ΩH is the Hopf frequency
of the wall mode. For the case shown in figure 2, Ωp = −0.2831 (it is negative because
the precession is retrograde).

4. Results
4.1. Wall-mode quenching

When wall modes are subjected to modulated rotation, the convective plumes
disappear for quite small amplitudes of modulation over a range of modulation
frequencies. While at first glance one may expect resonances to be responsible, they
are not. The quenching of the wall mode is not a result of resonance with the
modulation-driven flow. The reason is that for there to be a resonance between
the two flows, both the temporal frequencies and the spatial frequencies need to be
in the same rational ratio (see the discussion in the appendix of Lopez & Marques
2004). While the temporal frequencies could be tuned, the azimuthal wavenumbers
are never resonant with them. The wall mode has m �= 0 (here we focus on m =17)
and the modulation-driven flow is axisymmetric with m =0.

The space–time plots in figure 3 show the decay of transients for two small
modulation amplitudes, A= 0.0075 and 0.0100. Both evolutions were initiated with
the wall mode shown in figure 2 at Ra = 5 × 104, Ω0 = 625 and Ωm = 101.75. This
value of Ωm corresponds to a modulation period of τ = 2π/Ωm ≈ 0.112 viscous times,
which is very small compared to the 22.19 viscous times for the unmodulated wall
mode to precess 2π radians (the modulation can be seen as ‘wiggles’ in the mean
precession of the wall plumes in the figure). For a modulation amplitude of 0.75 %
of the background rotation rate (A= 0.0075), we see in figure 3(a) that the wall
mode quickly adjusts to the modulated rotation rate and persists indefinitely, sloshing
back and forth with the modulation period. The adjustment is seen as a reduction in
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Figure 4. Variation of Θ0 with A at Ωm = 101.75. Data points are shown as circles while
the cases in figures 3(a) and 3(b) are shown as filled diamonds. A solid black curve shows
a quadratic fit of the first five data points while horizontal dashed and solid lines show the
values of A for which the synchronous state is unstable and stable, respectively.

contrast of the grey scales over the first viscous time in figure 3(a). Such states where
the wall mode coexists with the secondary flow driven by the modulated rotation are
referred to as modulated wall modes. These states have the same spatial symmetries
as the unmodulated wall modes, however their spatial structure varies with time and
they are no longer relative equilibria. For a slightly larger A= 0.01, we see from
figure 3(b) that in about five viscous times, corresponding to about 45 modulation
periods, the wall mode has been quenched and thermal convection ceases. The final
state is τ -periodic (synchronous with the modulation) and invariant under both Rα

and Kz; we refer to such states as the synchronous states. Movies 2 and 3 in the
online version show three-dimensional renderings of the solutions in figures 3(a) and
3(b), respectively.

The quenching of a wall mode at some critical A and Ωm is a SO(2) × Z2 symmetry-
restoring Hopf bifurcation. A convenient measure to determine when this occurs is
the maximum value of Θ at mid-height on the wall:

Θmax(t) = max
θ∈[0,2π)

|Θ(r = γ, θ, z = 0, t)|. (4.1)

Its value at the start of a modulation period, Θmax(nτ ), for n (number of modulation
periods) large enough so that the transients have decayed, is constant and we shall
denote it as Θ0. For the synchronous states, when the wall modes have been quenched,
Θmax(t) = 0 and Θ0 = 0, while for modulated wall modes these quantities are not zero.
Figure 4 shows the variation in Θ0 for varying A at Ωm = 101.75. Clearly seen is
the

√
Ac − A scaling characteristic of a Hopf bifurcation while the measured Hopf

frequencies ΩH (A) vary weakly between 4.7807 and 4.8447 for Θ0 > 0; ΩH =4.8127
for the unmodulated case A= 0. Figure 5(a) shows how this local (in space and
in time) measure of the temperature varies with Ωm and A for Ra = 5 × 104 and
Ω0 = 625. There is a drop in Θ0 for a range of frequencies centred about Ωm = 101.75

that expands with increasing A, and quenching (Θ0 → 0) occurs for A > 0.01 in this
range of frequencies. At low Ωm, there is an enhancement in Θ0 with increasing A,
but this is an artefact of the phase of the modulation chosen to define Θ0. While
Θ0 is definitive in characterizing quenching, a more global measure is also needed to
assess the net effects of the modulations.

Such a global measure is the time-averaged heat flux across the layer. The heat
flux vertically across the layer is characterized by the Nusselt number, the ratio
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Figure 5. Variation with Ωm of (a) Θ0 and (b) Nu − 1, at A as indicated, for modulated wall
modes at Ra = 5 × 104 and Ω0 = 625. The values of Nu − 1 for the axisymmetric synchronous
state are drawn as dotted lines in (b).

between the heat transfer of the solution considered, and the heat transfer of the
A = 0 conductive state, given by

Nu = −〈∂T /∂z〉|z=0.5 = 〈1 − ∂Θ/∂z〉|z=0.5, (4.2)

where 〈·〉 =
∫ γ

0

∫ 2π

0
·r dr dθ . Since the flow is time dependent for A> 0, we consider

the Nusselt number averaged over the modulation period τ

Nu =
1

τ

∫ τ

0

Nu dt. (4.3)

Note that for A = 0, since the wall modes are rotating waves whose spatial structure
simply precesses without change, their Nusselt number is constant.

Figure 5(b) shows that the mean heat flux associated with the modulated wall
modes is diminished with increasing A. For the range of Ωm for which the wall
modes are quenched (Θ0 → 0), the system is not convecting heat in the usual sense,
however, the synchronous state to which the modulated wall modes are quenched
have Nu − 1 �= 0. This modulation-driven heat flux is considerably smaller than that
in the absence of modulation with all other parameters being equal, as evidenced
in figure 5(b). For values of Ωm and A for which quenching does not occur, we
have also computed the (unstable) synchronous state by restricting the simulations
to the axisymmetric subspace, i.e. solving the axisymmetric governing equations. The
corresponding Nu −1 values are drawn as dotted lines in figure 5(b). The points where
the solid Nu − 1 curves of the modulated wall modes meet these dotted curves (for
the same value of A) correspond to symmetry-restoring Hopf bifurcations responsible
for the quenching. For the range of Ωm where quenching takes place, the heat flux
Nu −1 peaks to non-trivial values. This enhanced heat flux is driven by the oscillatory
boundary layers. This mechanism is explored in the following subsection.
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Figure 6. Contours in a meridional plane r ∈ [0, γ ], z ∈ [−0.5, 0.5] of (a) ψ (streamlines),
(b) rv+r2Ω0 (vortex lines), (c) η (azimuthal vorticity) and (d) Θ (temperature perturbation), for
the synchronous state at A = 0.05, Ωm = 101.75, Ra = 4 × 104 and Ω0 = 625. Five positive (black)
and five negative (grey) contours are linearly spaced for ψ ∈ [−1.5, 1.5] and Θ ∈ [−0.1, 0.1],
five positive and five negative contours are quadratically spaced for η ∈ [−1000, 1000], while
10 contours are quadratically spaced for rv + r2Ω0 ∈ [0, 1 × 104]. Movie 4, available in the
online version, shows this solution over 1.12 viscous times (10 modulation periods) at a rate
of 0.0186 viscous times per second (6 s per modulation period).

4.2. Synchronous state

In order to better understand the interaction between the oscillating boundary layers
and the wall-localized thermal plumes, it is useful to study the boundary layers in
isolation from the wall modes in the synchronous state. Since the synchronous state
is axisymmetric, it is convenient to describe it in terms of streamlines and vortex
lines. In the laboratory frame, the velocity is (u, v + rΩ0, w), and the meridional
components can be written in terms of the Stokes stream function u = − 1/r∂ψ/∂z

and w = 1/r∂ψ/∂r . The corresponding vorticity is(
− 1

r

∂(rv + r2Ω0)

∂z
, −1

r

(
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
ψ,

1

r

∂(rv + r2Ω0)

∂r

)
. (4.4)

Contours of ψ in a meridional plane depict the streamlines, and likewise, contours of
rv + r2Ω0 depict the vortex lines. Note that since Ω0 is a constant, the radial vorticity
is simply −∂v/∂z. The only variables that change between the laboratory and the
rotating reference frames are the azimuthal component of velocity (differs by rΩ0)
and the vertical vorticity (differs by the constant term 2Ω0).

In the unmodulated problem, for Ra < Rac the fluid remains in solid-body rotation
with vortex lines parallel to the rotation axis. For A > 0, the vortex lines are alternately
displaced radially outward and inward in harmonic Ekman layers at the top and
bottom of the cylinder as the cylinder accelerates and decelerates over the modulation
period. Of course, the vortex lines are not bent purely in the radial direction, but
also into the azimuthal direction (Davidson 1989; Lopez 1995), and this resultant
azimuthal component of vorticity η drives a meridional circulation characterized by
the stream function η = uz − wr = − ψrr/r + ψr/r2 − ψzz/r (see (4.4)). Figure 6 shows
the streamlines, vortex lines, azimuthal vorticity and temperature perturbation of a
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periodic solution at A= 0.05, Ωm = 101.75, Ra = 4 × 104 and Ω0 = 625 at two phases of
the modulation period, corresponding to the maximum and minimum values of Ω(t).
Movie 4 in the online version shows the solution in figure 6 over 10 periods. In this
case, Ra is well below critical for the onset of thermal convection, ensuring that the
synchronous state, which lacks thermally driven convection, is stable. The τ/4 phase
of the modulation is the end of the acceleration phase, and the vortex line bending
drives a secondary flow which centrifuges fluid in the harmonic Ekman layers radially
outwards. This centrifuged fluid drives cold fluid from the top layer and warm fluid
from the bottom layer into the sidewall layer. The harmonic Ekman layers are seen
as thin sheets of azimuthal vorticity at the top and bottom lids with weaker layers
of oppositely signed vorticity just below and above, respectively. The 3τ/4 phase is
the end of the deceleration phase; now the vortex lines bend in the reversed direction
driving a secondary flow which draws fluid from near the sidewall radially inward in
thin harmonic Ekman layers in which the sign of the azimuthal vorticity has changed
since the acceleration phase. Fluid from the core moves towards the corners where
the lids meet the sidewall to replace the fluid drawn into the harmonic Ekman layers,
making the top (bottom) corner relatively warmer (cooler).

Figure 7(a) shows vertical profiles of the azimuthal vorticity at r = γ /2. For Ωm <

102.5, the azimuthal vorticity profiles behave as a standing wave with no noticeable
penetration of the azimuthal vorticity beyond 0.15d from the lid. The standing waves
are predicted by the analysis of simple-harmonic Ekman flow (Chapter 7, § 3.5 of Yih
1977), which considers the harmonic modulation of a rotating infinite disk, at vertical
location z∗ = 0 with length scale

√
ν/Ω0, where Ω0 is the mean rotation equal to the

background rotation. Such a flow has an azimuthal velocity

v(z∗, t) = 0.5AΩ0Re
[
e−β1z

∗+iΩmt + e−β2z
∗+iΩmt

]
, (4.5)

where Re denotes the real part and β1 and β2 are the roots with positive real part of
the characteristic polynomial that arises after the radial velocity is eliminated

y4 − i2Ωmy2 −
(
Ω2

m − 4Ω2
0

)
= 0. (4.6)

The arrows shown with the azimuthal vorticity in figure 7(a) show the characteristic
scaling lengths δβ1

=Re(β1)
−1 and δβ2

= Re(β2)
−1 for each Ωm. When Ωm < 2Ω0, the

solution is a pair of counter-propagating waves that are nearly balanced for small
modulation frequencies. When Ωm/Ω0 << 1, Yih’s solution can be approximated by

v(z∗, t) ≈ AΩ0e
−Ω−0.5

0 z∗
cos(Ωmt) cos

(
2Ω0.5

0 z∗), (4.7)

which is a standing wave. For Ωm � 102.5, the two theoretically predicted counter-
propagating waves are no longer nearly balanced and the azimuthal vorticity near the
top and bottom lids act as travelling waves. Figure 7(b) shows radial profiles of the
relative axial vorticity v/r + vr , at the mid-height z = 0. For the range of modulation
frequencies explored, the sidewall boundary layer behaves as a travelling wave similar
to a Stokes layer, whose δSt = Ω−0.5

m scaling depth is shown in the figure for each
sidewall relative axial vorticity profile.

The depth of the boundary layer at the top and bottom lids was estimated by finding
the first zero of the azimuthal vorticity (circles in figure 7a). The results are shown
in figure 8(a) and are compared with the harmonic Ekman layer depths δβ1

and δβ2

given by Yih (1977), which we have scaled to the mean boundary layer depth in our
problem at Ωm = 1. The theoretical estimates of Yih capture the Ωm dependence of
our boundary layers on the top and bottom lids, including the onset and approximate
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Figure 7. Profiles of η (azimuthal vorticity) and v/r + rvr (relative axial vorticity) for the
synchronous states at A =0.05, Ra = 4 × 104, Ω0 = 625 and various Ωm. Data is shown at
r = γ /2 for z ∈ [−0.5, −0.25] and r ∈ [3.4, 4.0], respectively, over 10 equally spaced phases of
a modulation period. The circles show the boundary layer depth estimate for each time that
is used in the calculation in figure 8. The arrows labelled δβ1

and δβ2
give the boundary layer

depth estimates for Yih’s harmonic Ekman layer analysis in the vertical azimuthal vorticity
figures and the arrows labelled δSt give the Stokes boundary layer depth estimate in the radial
relative axial vorticity figures.

magnitude of the travelling waves found at higher Ωm. Measurements of the boundary
layer thickness at the sidewall are more difficult as the far-field (r = 0) axial vorticity
adjusts with the modulation. The sidewall boundary layer depth was estimated as the
distance where the relative axial vorticity near the sidewall is 90 % of its free stream
value. For Ωm < 10 the mean boundary layer depth is approximately independent
of Ωm, whereas for larger Ωm, it has the classical Stokes layer scaling of Ω−0.5

m . At
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Figure 8. (a) Estimated top and bottom lids boundary layer depth δBL for synchronous states
at A = 0.05, Ra = 4 × 104, Ω0 = 625 and various Ωm at r = γ /2 over a modulation period. δβ1

and δβ2
, the theoretical harmonic Ekman layer depth estimate given by Yih and scaled to the

measurement at Ωm = 1 are shown as solid lines, forming a horn-shaped region. (b) Estimated
sidewall boundary layer width measured at z = 0 for the same cases as shown in (a). A solid
line indicates the theoretical Stokes layer depth estimate and a dashed line indicates the width
of a thermal plume in the unmodulated case. In both plots mean values are shown as empty
circles with the standard deviation denoted by error bars.

frequencies near optimal for quenching wall modes, the variation of its depth over a
period (characterized by the standard deviation, as indicated by the error bars in the
figure) is largest, tapering off for larger and smaller Ωm.

For the synchronous state, the instantaneous (u, v, w, Θ) scale linearly with A.
Figure 9(a) illustrates this linear scaling by plotting the L2-norms of (u, v, w, Θ)/A at
a particular phase of the modulation period (t0 = τ/2), for Ra = 4 × 104 and Ω0 = 625
over a range of Ωm and several values of A. Similar linear scalings with A occur at
other phases. For larger A the linear scaling deteriorates slightly; this is manifested
as a phase shift in the instantaneous azimuthal velocity v.

The time averages over a modulation period of (u, v, w, Θ) scale with A2. Figure 9(b)
illustrates this by plotting the L2-norms of (u, v, w, Θ)/A2, where

(u, v, w, Θ) =
1

τ

∫ τ

0

(u, v, w, Θ)(r, θ, z, t) dt. (4.8)

The difference between the linear scaling for the instantaneous fields and the quadratic
scaling for the time averages can be accounted for by considering the Fourier
expansions of the variables in time. Since the synchronous axisymmetric state is
time periodic with the same period as the forcing τ = 2π/Ωm, it can be Fourier
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Figure 9. Variations with A and Ωm of (a) the L2-norms of (u0, v0, w0,Θ0) divided by A

for A = 0.0075, 0.0150, 0.0300 and (b) the L2-norms of the (u, v,w,Θ) divided by A2 for
A =0.0075, 0.0150, 0.0300, both taken for synchronous states with Ra = 4 × 104, Ω0 = 625.

expanded in time as (using v as an example)

v(r, z, t) =

∞∑
n=−∞

Cn(r, z)e
inΩmt . (4.9)

Substitution into the Navier–Stokes equations results in a coupled system of PDEs
for the coefficients Cn(r, z). The equation for Cn is linear, except for the advection
terms which are quadratic and couple Fourier modes with different n. The external
forcing appears only in the boundary conditions for the n= 1 mode. As a result, for
small forcing amplitude A (so that higher order terms coming from the nonlinearities
are smaller than the boundary forcing, which is linear in A), C1 ∝ A. This is the origin
of the linear scaling of the instantaneous velocity with A. The source terms for the
n �= 1 temporal Fourier modes come exclusively from the quadratic advection terms,
resulting in C0, C2 ∝ A2, C3 ∝ A3 and so on (in fact, Cn ∝ An for n � 1, where An

is the lowest order of A appearing in Cn). Upon taking time averages of a periodic
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Figure 10. Contours of the meridional streaming flow Ψ , mean temperature perturbation Θ
and azimuthal streaming flow v, for synchronous states at A = 0.03, Ra = 4 × 104, Ω0 = 625
and various Ωm. Ten positive (black) and 10 negative (grey) contours are linearly spaced for
Ψ ∈ [−0.03, 0.03], Θ ∈ [−0.01, 0.01] and v ∈ [−1.5, 1.5], in a meridional plane r ∈ [0, γ ],
z ∈ [−0.5, 0.5].

quantity, such as v, only the zero Fourier mode survives, because∫ τ

0

einΩmtdt = 0, ∀ n �= 0. (4.10)

Therefore v ∝ C0 ∝ A2, giving the observed quadratic scaling with A. In summary,
instantaneous values are dominated by the n= 1 temporal Fourier mode, driven by
the forcing, with amplitude proportional to A, while the time-averaged values contain
only the n= 0 Fourier mode, driven by the quadratic advection terms, with amplitudes
proportional to A2.

The mean streaming flow characterized in figure 9(b) is driven by the modulations.
It is negligible for Ωm < 10, and the mean meridional flow has a relative maximum
near Ωm = 100. The L2-norm of the mean azimuthal flow is an order of magnitude
larger than that of the mean meridional flow, and all the mean velocity components
are largest at the highest frequencies considered. The mean thermal perturbation is
largest near the optimal quenching frequency of Ωm = 101.75 and gradually declines
with increasing Ωm. This is consistent with the behaviour of Nu−1, the time-averaged
Nusselt number, discussed in § 4.1, since

Nu = < 1 − ∂Θ/∂z >z=0.5 . (4.11)

The structure of the mean streaming flow, which is axisymmetric, in a meridional
plane at A= 0.05, Ra = 4 × 104 and Ω0 = 625, for various Ωm, is shown in figure 10.
The streaming flow is strongest near the sidewall, occupying about the same volume
as the thermal plumes of the wall mode at the higher Ra = 5 × 104. The mean
meridional flow, characterized by the mean stream function, is shown in figure 10(a).
At the highest frequencies, the mean meridional flow penetrates into the interior. The
structure of the mean thermal perturbation Θ is shown in figure 10(b). Figure 10(c)
shows the mean azimuthal flow v, which is in the prograde direction, whereas the
unmodulated wall mode precesses in the retrograde direction.

From the parametric studies of the wall-mode quenching and of the structures of the
boundary layers and the mean flow, three different frequency regimes clearly emerge.
The low-frequency regime corresponds to frequencies Ωm � 100.5 for the Ra = 4 × 104

and Ω0 = 625 case shown in detail in this section. In this regime, the harmonic
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Ekman layers at the top and bottom endwalls behave as standing waves. The sidewall
boundary layer is thick, its depth varies little in time, and the mean streaming flow
(u, v, w, Θ) is very weak.

The intermediate-frequency regime, where the quenching acts efficiently, corresponds
to frequencies 100.5 � Ωm � 102.5 for the Ra = 4 × 104 and Ω0 = 625 case. Here, the
harmonic Ekman layers at the top and bottom endwalls continue to behave as
standing waves, the sidewall boundary layer is also thick, but its depth varies
considerably with time. The magnitude of the azimuthal mean velocity increases
with frequency in this regime. The magnitudes of the mean meridional velocities
have local maxima for Ωm very close to the most efficient quenching frequency, and
the magnitude of Θ is also largest in this frequency range. This strongly suggests
that the physical mechanism responsible for the quenching is associated with the
strong meridional mean flow and the corresponding enhanced heat transport. This
meridional mean flow is localized near the sidewall, where the thermal plumes of the
wall modes also appear. The spatial structure of this mean flow is in sharp contrast to
the structure of the thermal plumes of the wall modes. The mean flow is axisymmetric
and reflection symmetric with respect to the horizontal mid-plane, and its vertical
velocity and temperature perturbation change sign in the top and bottom halves of
the cylinder, vanishing at mid-height. The wall mode thermal plumes are far from
axisymmetric and have maximum vertical velocity at mid-height, and this changes
sign from plume to plume in the azimuthal direction, with the cold plumes comprised
of descending fluid and the hot plumes with rising fluid.

The high-frequency regime corresponds to frequencies larger than about Ωm ≈ 102.5

(for the Ra = 4×104 and Ω0 = 625). In this regime, the harmonic Ekman layers behave
as travelling waves and the sidewall boundary layer is thin and its depth varies little
with time. The magnitudes of mean velocities are larger than in the intermediate-
frequency regime, while the mean temperature Θ is smaller. The quenching mechanism
ceases to work, very likely because the meridional mean flow is no longer concentrated
at the sidewall boundary layer but penetrates into the bulk, and the induced heat
transport decreases. The salient feature in this regime is the presence of a very strong
azimuthal steady streaming, which drags the thermal plumes reducing their precession
frequency.

We have defined the frequency ranges in the particular case Ra = 4 × 104 and
Ω0 = 625 discussed in detail in the paper. They can be defined in other parameter
regimes in terms of the frequency at which the mean temperature Θ reaches its
maximum value, Ωmax

m (see figure 10b). The intermediate-frequency regime is centred
around this Ωmax

m frequency, and it extends approximately 1 order of magnitude below
and above this value.

4.3. Modulated wall modes

For modulation frequencies and amplitudes where the wall modes are not quenched,
the behaviour of the resultant modulated wall modes are characterized by two regimes,
the low and the high Ωm regimes described above. For amplitudes A where there is
no quenching for any Ωm, there is a smooth transition between these two regimes.
However, for A large enough (greater than about 1 %), the two regimes are well
separated by a spectral gap in Ωm which grows with A (see figure 5).

Figures 11(a) and 11(b) show an overhead and perspective view of a modulated wall
mode with A= 0.0075, Ωm = 101.75, Ra =5 × 104 and Ω0 = 625 at the beginning of a
modulation period. While the wavenumber and overall shape of the plumes remain
intact, Θ0 is about half that of the unmodulated wall mode shown in figure 2(a).
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Figure 11. (a) Temperature perturbation Θ at the start of a modulation period for A =0.0075,
Ωm =101.75, Ra = 5 × 104 and Ω0 = 625; it shows contours at z = 0, five positive (black) and
five negative (grey) in the range Θ ∈ [−0.125, 0.125], (b) a perspective view of isosurfaces
at Θ = ± 0.05. (c) Close ups of the horizontal section delineated by the box in (a) over a
modulation period τ ; the black radial line in each frame indicates the centre of a single cold
plume over time and a black dot on the cylinder wall shows the position of a fixed point on
the boundary.

At this low-modulation amplitude (A= 0.0075), the secondary flow driven by the
oscillatory boundary layers co-exists with the wall-localized plumes. At Ωm = 101.75,
the plumes do not precess significantly over the course of a modulation period.
Figure 11(c) shows the temperature perturbation at mid-height z =0 in a horizontal
section near the sidewall (indicated by the box in figure 11a). The radial line in each
panel of figure 11(c) indicates the angular location of an individual cold plume and
the black dot on the cylinder wall indicates the modulated rotation of the cylinder.

In the low Ωm regime (with periods much larger than the thermal adjustment
time, d2/κ) and low-modulation amplitudes (A < 0.01), the wall mode adjusts quasi-
statically between states with Coriolis numbers Ω0(1 ± A). The adjustment in the
precession rate lags the change in the cylinder rotation by a small percentage of the
modulation period. Figure 12(a–c) shows space–time diagrams of Θ(r = γ, θ, z = 0, t)
over 10 viscous times for low Ωm = 100.5 at various A. The plots are presented in the
reference frame of the modulated cylinder, as the convective plumes are advected by
the velocity fields in the sidewall boundary layer, complicating the use of the constant
rotation frame for low-modulation frequencies as the position of the cylinder can
deviate by as much as 2AΩ0/Ωm radians from its original position in the reference
frame rotating at the mean rotation rate. For low Ωm, solutions with increasing A

have significantly larger angular displacements, indicating that the azimuthal velocity
near the sidewall is out of phase with the modulation. The convection is periodically
enhanced during the acceleration phase and impeded during the deceleration phase
of the modulation (seen as higher and lower contrasts in grey scale of the diagrams).
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Figure 12. Space–time diagrams of modulated wall modes at Ra =5 × 104 and Ω0 = 625,
showing Θ(r = γ, θ, 0, t) with θ ∈ [0, 2π) (horizontal) in the reference frame of the modulated
cylinder over 10 viscous times (vertical), for various A in (a–c) the low-frequency regime
with Ωm = 100.5 and in (d–f ) the high-frequency regime with Ωm = 103. A little over five
modulations periods are shown for Ωm = 100.5 and almost 1600 modulation periods are shown
for Ωm = 103.

The high Ωm = 103 space–time diagrams are shown in figure 12(d–f ). On the
scale of the figures, the high-frequency modulation is not visible; in the time shown
(10 viscous times) there are about 1600 modulation periods. For A = 0.0075, the
space–time diagram is virtually indistinguishable from that of the unmodulated wall
mode; the mean precession is virtually the same as Ωp . For large Ωm, increasing
A has the effect of slightly weakening the convection while substantially changing
the pattern precession rate; the net precession at A= 0.03 has been slowed down
considerably.

Figure 13 shows the angular position of the centre of a plume over 10 modulation
periods for A=0.0075, 0.0150 and 0.0300 with Ωm = 103, Ra = 5 × 104 and Ω0 = 625.
The plumes are sloshed back and forth by the modulation, and the amplitude of
this sloshing motion increases linearly with A, as with the instantaneous velocity
fields of the synchronous state. A solid black line gives the angular position of
the centre of a plume for the unmodulated case at the same Ra and Ω0. The net
precession of an individual plume over a modulation period can be quantified by
Ωp = (φf − φi)/τ , where φi and φf are the initial and final angular positions of

a plume over a modulation period τ ; at A= 0, Ωp =Ωp . The symbols in figure 13
correspond to the angular position of the plume at the end of each period. These
symbols are on straight dashed lines of slope Ωp . The change in the net precession
with increasing modulation amplitude A is quadratic, as is the mean velocity field of
the synchronous state.

For Ωm < 101.75, Ωp is approximately equal to the precession rate of the
unmodulated wall mode. However, for larger Ωm, the mean precession rate slows,
stops and reverses with increasing A; figure 14 gives the variation of Ωp with A for
three different values of Ωm. The contribution of the mean azimuthal streaming flow
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Figure 13. Angular position of the centre of a plume over 10 periods for A as indicated; the
symbols correspond to the angular position of the plume at the end of each period. Ωm = 103,
Ra = 5 × 104 and Ω0 = 625. A black line indicates the angular position of the centre of a plume
for the unmodulated case at the same Ra and Ω . Dashed lines show Ωpt for each solution.
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Figure 14. Variation of Ωp with A for Ωm as indicated. The solid line shows the maximum

mean angular velocity for synchronous states at Ωm = 103, Ra = 4 × 104, Ωm = 625, translated
by the precession frequency of the unmodulated wall mode Ωp .

(figure 10) in advecting the thermal plumes at high Ωm is quantified by the solid line
in figure 14. This line corresponds to the maximum mean angular velocity ||v/r ||∞
of the synchronous state at Ωm = 103, Ra = 4 × 104, Ω0 = 625 plus the retrograde
(negative) precession frequency of the unmodulated wall mode Ωp . The variation

in Ωp with A is mostly accounted for by the angular velocity associated with the
azimuthal streaming flow induced by the high-frequency modulations.

5. Conclusions
We have considered rotating Rayleigh–Bénard convection in a regime where the

rotation (characterized by the Coriolis number Ω0) is sufficiently larger than the
onset of thermal convection, as the Raleigh number Ra is increased, is to a wall
mode consisting of a pattern of hot and cold plumes, localized in the cylinder
sidewall boundary layer, that precesses retrograde to the background rotation. These
wall modes have been subjected to harmonic modulations of the rotation rate of
very small amplitude A and over a wide range of modulation frequencies Ωm. The
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modulation gives rise to oscillatory boundary layers on the top, bottom and side
endwalls of the cylinder which drive a large-scale axisymmetric oscillatory flow, and
for medium and high frequencies they also drive a mean streaming flow, both of
which are strongest at the cylinder sidewall, precisely where the wall-mode plumes
are manifest. The nonlinear interactions between the modulation-driven axisymmetric
flows and the wall modes have been explored in detail.

The dynamics of the onset of thermal convection in the modulated problem as
Ra is increased are qualitatively the same as in the unmodulated case, however, the
basic state is now a limit cycle synchronous with the modulation instead of the trivial
state of solid-body rotation with a linear temperature profile in z, and the onset
of thermal convection is to modulated wall modes at a Hopf bifurcation from the
non-trivial basic state. A striking result of the imposed modulations over a wide range
of frequencies, even for very small amplitudes, is the delay in the onset of the wall
modes to much higher Ra , or for a given Ra , the complete quenching of the wall
modes as the modulation amplitude A is increased. This delay of the onset of the
wall modes is not a resonance effect, but rather a nonlinear interaction between the
oscillatory boundary layers, which are inherently very stable against three-dimensional
disturbances, and the wall modes, which are inherently three-dimensional. The lack
of resonances when modulating rotating waves follows from the general theory that
Hopf bifurcations from rotating waves do not manifest frequency-locking due to the
rotational symmetry in the problem (Rand 1982; Krupa 1990). We have observed and
analysed the same absence of resonances in harmonically modulated Taylor–Couette
flow (Avila et al. 2007).

The use of oscillatory Stokes boundary layers in the control of hydrodynamic
instabilities has a long history (Davis 1976). They are particularly efficient in inhibiting
and quenching three-dimensional instabilities, even when the applied amplitude is very
small. We have observed this in diverse flows, including Taylor–Couette (Marques &
Lopez 1997, 2000; Avila et al. 2007), vortex breakdown (Lopez et al. 2008), rotating
convection (Rubio et al. 2008) and the present flow provides yet another example. The
well-defined structure of the wall modes has allowed us in this problem to explore
in detail the interactions between the three-dimensional rotating thermal convection
flow and the axisymmetric modulation-driven flow.

The nonlinear interaction between the oscillatory boundary layers and the wall
modes is characterized by three different frequency regimes. The low Ωm regime
consists of a quasi-static adjustment to wall modes corresponding to the instantaneous
value of the background rotation Ω(t) = Ω0[1 + A sin(Ωmt)]. In the high Ωm regime,
the thermal plumes associated with the wall mode remain intact despite the much
stronger oscillatory and mean flows. However, the strong azimuthal streaming flow,
whose strength increases with A and Ωm, greatly affects the motion of the wall modes,
resulting in the thermal plumes precessing in the prograde direction at the largest
values of A and Ωm explored, as shown in figure 14.

For intermediate Ωm, the action of the oscillatory boundary layers optimally quench
the three-dimensional aspects of the flow. This quenching occurs as a symmetry-
restoring Hopf bifurcation in which the non-axisymmetric component of the solution
associated with thermal convection disappears. There is a large band of modulation
frequencies for which the onset of wall-localized thermal convection is delayed
by at least 18 % for modulation amplitudes as small as 1 % of the background
rotation rate. The physical mechanism by which this delay occurs is characterized by
the time-averaged Nusselt number of the synchronous state, and by extension,
the strength of the mean thermal perturbation. The effect of the secondary
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modulation-driven flow on the thermal field is most pronounced for frequencies
near Ωm = 101.75, even though the oscillatory and mean velocity are considerably
stronger at larger Ωm for a fixed A. However, the meridional component of the mean
streaming flow peaks in strength in the intermediate Ωm regime, and is seen to be
responsible for the quenching. As the strong secondary flow driven by the oscillatory
boundary layers is a consequence of the finite geometry of the enclosed cylinder, we
have the result of suppressing one confinement effect (wall-localized convection) with
another (secondary flow due to the action of the oscillatory boundary layers).
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